Three Springs Key Points and Difficulties in the Processing and Fabrication of Steel Structure Spiral Stairs

Three Springs
Three Springs 1. 3D Space Modeling and Lofting
- BIM Reverse Modeling: It is necessary to construct an accurate 3D model based on design parameters (rotation radius, tread angle, central column diameter). Use parametric modeling with BIM or Rhino + Grasshopper to verify the spatial geometric relationships and avoid interference between the tread plate, the central column and the handrail.
Three Springs
Three Springs - Segmented Lofting Strategy: Discretize the spiral line into multiple broken lines. Use a numerically controlled cutting machine to perform special-shaped cutting on the tread plate and the supporting beam, and mark the spatial positioning points (such as the welding coordinates of the tread plate and the central column).
Three Springs 2. Material Selection and Pretreatment
Three Springs
Three Springs - Main Structural Materials: For the central column, seamless steel pipes are preferably selected (such as Φ200×10mm Q345B). The tread plate is made of 8 - 12mm anti-slip checkered steel plate, and the handrail support is made of Φ50×3mm stainless steel pipe.
Three Springs
Three Springs - Anti-corrosion Pretreatment: For outdoor stairs, the steel needs to be sandblasted to remove rust (Sa2.5 level) and pre-coated with primer to avoid damage to the coating during subsequent welding.
Three Springs 3. Welding Deformation Control
Three Springs - Design of Workpiece Fixtures: Use an adjustable-angle circular welding fixture to fix the tread plate and the central column to ensure that the inclination angles of each tread plate are consistent (for example, each step rotates 10°).
Three Springs - Optimization of Welding Sequence: Adopt a symmetric skip welding process (such as welding the inner side weld first and then repairing the outer side weld), and control the interlayer temperature ≤ 150°C to reduce thermal deformation.
4. Assurance of Assembly Precision
Three Springs
Three Springs - Virtual Pre-assembly: Obtain the actual dimensions of the components through a 3D scanner, simulate the assembly in the software, and then carry out physical assembly after correcting the errors.
Three Springs
- Setting of Positioning Reference: Take the plumb line of the central column as the reference, and use a total station to calibrate the three-dimensional coordinates of the end points of each tread plate (the error is controlled within ±2mm).
Three Springs
II. Technical Difficulties and Solutions
Three Springs
Three Springs 1. Cold Bending and Forming of Spatial Curved Beams
Three Springs
Three Springs - Difficulty: The spatial double curvature of the spiral handrail makes traditional roll forming difficult.
Three Springs
Three Springs - Solution: Adopt segmented cold bending (the length of each segment ≤ 1.5m) + use a numerically controlled pipe bender to precisely control the bending radius, and reserve a 2mm finishing allowance at the interface.
Three Springs 2. Structural Stability under Asymmetric Loads
Three Springs - Problem: The rotating staircase is prone to lateral torsion under eccentric loads.
- Countermeasure: Pour C40 micro-expansive concrete (filling rate ≥ 90%) inside the central column, and at the same time, add triangular diagonal braces (such as L100×10 angle steel) at the cantilever end to form a spatial truss system.
Three Springs
3. Control of Tread Plate Flatness
Three Springs
- Challenge: Welding thermal deformation causes undulations on the surface of the tread plate (common error is 3 - 5mm).
Three Springs
Three Springs - Process Improvement: Use CO₂ gas shielded welding (current 180 - 220A, voltage 24 - 28V), and use a hydraulic straightening machine to perform local flattening treatment on the tread plate after welding.
Three Springs 4. Transportation of Special-shaped Components and On-site Installation
- Bottleneck: The overall spiral structure cannot be transported at one time and needs to be hoisted in sections.
Three Springs
- Modular Design: Decompose the staircase into a central column module (for overall transportation), a tread module (with every 3 steps as a unit), and a handrail module. Use high-strength bolts (grade 10.9) for on-site connection, and inject structural adhesive at the joints for sealing.
Three Springs III. Key Indicators for Quality Control
1. Dimensional Tolerance
Three Springs - The verticality deviation of the central column ≤ H/1000 (H is the total height)
Three Springs
Three Springs - The height difference between adjacent tread plates ≤ 3mm
Three Springs - The straightness deviation of the handrail ≤ 2mm/m
Three Springs 2. Mechanical Properties
- Static Load Test: Apply a load of 1.5kN/m², and the deflection ≤ L/250 (L is the span)
Three Springs - Natural Frequency Detection: Avoid resonance with the human walking frequency (1.6 - 2.4Hz)
Three Springs
Three Springs 3. Durability
- The thickness of the hot-dip galvanized layer ≥ 85μm (outdoor environment)
Three Springs
- The adhesion of fluorocarbon spraying ≥ 5MPa (tested by the cross-cut method)
Three Springs
Three Springs IV. Application of Innovative Processes
Three Springs 1. 3D Printing of Positioning Molds: Use nylon materials to print the spatial positioning fixtures for the tread plate to improve the assembly efficiency.
Three Springs
Three Springs 2. Robot Welding: For repetitive weld seams (such as the connection between the tread plate and the central column), use a six-axis welding robot, and the weld penetration depth reaches more than 70% of the thickness of the base metal.
Three Springs
Three Springs 3. BIM + AR Technology: Overlay the 3D model onto the construction site through augmented reality devices to provide real-time guidance for the installation and positioning of complex nodes.
Three Springs
Three Springs Conclusion
Three Springs
Three Springs The processing of steel structure spiral stairs is essentially a combination of precision machinery manufacturing and architectural art. It is necessary to achieve the quality objectives through digital modeling, process innovation and strict process control. It is recommended to carry out 1:1 local entity prefabrication at the initial stage of the project, and then start mass production after verifying the process feasibility.

Three Springs
发表评论